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Section 1

INTRODUCTIONAND SUMMARY

1.1 OBJECTIVE

The objective of the work reported here is to develop a computer-implemented numerical

method for predicting the flow characteristics and performance of three-dimensional jet

exhaust nozzles. The immediate objective is to develop a method for an isolated nozzle°

Both the internal exhaust gas flow and the external air flow with which it interacts are

addressed. High Reynolds number turbulent flows are of primary interest for any

combination of subsonic, transonic, and supersonic flow conditions inside or outside

the nozzle. The method is designedto handle a variety of geometrically complex

nozzle configurations, including nozzles that possess one plane of symmetry, two

mutually perpendicular planes of symmetry, and nozzles with internal wedgeplugs

and external side plates. Of specific interest is the nonaxisymmetric nozzle configura-

tion, illustrated in Fig. 1-1. The internal cross-sectional shapeis circular at the

entrance, is super-elliptical through a transition section, andbecomes rectangular at
the exit.

The author is indebted to Dr. Dieter K. Lezius, who provided the material on turbulence

models that appears in Section6, and to Mr. Jacques F. Middlecoff and Mrs. Karen

L. Neier, who performed the bulk of the effort in programming the algorithm for com-
puter solution.

1.2 APPROACH

The present approach has three primary features:

(1) A unified solution to the time-dependent Navier-Stokes equations in all
regions of the flowfield and at all Mach numbers

(2) A general boundary-conforming curvilinear coordinate system and

computational grid

(3) A fully implicit numerical methodthat is unconditionally stable with respect to
the time step

1-1



Z

I

I

I N FL0 W ?'___/__//,///////

BOUNDARY--_ _

i
I
!

STATION I

LATERAL OUTER BOUNDARY

-_ _ _
I COMPUTATI ONAL BOU NDARIES
I jj_1

I
I SIDE PLATES I

I
2 3 4

SIDE VIEW

>.-

2

J I

I I

INFLOW _I II
BOUNDARY I

'
I

I
I
I

I
I
[

O

O
,...1
U-

O

MAX

Y

I LATERAL OUTER BOUNDARY

Jl _--_--_--_--_--_--_-COMPUTATIONAL- BOU N DARI ES_ -q

g

PLA N Vl EW

I°..,.r..
JqIiI.--

:D

i°

Fig. 1-1 Sketch of Nozzle Geometry and Computational Boundaries
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The nozzle flows in question are steady. The approach adopted here yields the desired

steady flow solution as the time-asymptotic limit of an unsteady flow. The implicit

numerical method is applicable to the complete three-dimensional Navier-Stokes equa-

tions. However, in the interest of computational efficiency, we have elected to employ

the "spatially parabolic" approximation in which the viscous transport processes

in the general streamwise direction are neglected. The resulting equations retain all

terms that are significant in wall boundary layers, whether separated or attached,

and in free shear layers. They also retain all inviscid terms, so that predominantly

inviscid regions of the flow are represented accurately.

The ability of the approximate equations to represent wall boundary layers and free

shear layers accurately is of great importance for predicting the nozzle performance.

Both the nozzle discharge coefficient and the thrust efficiency are strongly affected by

the boundary layers; the former through blockage of the mean flow as a result of

boundary layer displacement effects (viscous-inviscid interaction), and the latter by

skin friction drag on all internal and external walls. For subsonic nozzle flow, the

shear layer between the exhaust jet and the external stream may also affect the nozzle

performance.

With this basic approach of solving the Navier-Stokes equations throughout the geo-

metrically complex nozzle flow field, the use of some kind of implicit numerical method

is essential for rational computation times with reasonable boundary-layer resolution.

Virtually all nozzle internal and external flow conditions of interest are at high Reynolds

numbers where the flow is turbulent and the boundary and shear layers are thin compared

to a characteristic nozzle dimension. If one employs a finite-difference grid fine enough

to accurately resolve the thin viscous layers, high computational efficiency can be

achieved only with an implicit, unconditionally stable, numerical method. Explicit

methods are inadequate because their conditional stability imposes severe limitations

on the allowable time stepsize.
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1.3 OVERVIEWOF THE REPORT

This report presents the theoretical foundation and formulation of the numerical method.

A manualdescribing the computer program, its structure, and its application comprises

a supplementto this report.

Thebasic equations andboundary conditions are presented in Section 2. The strong

conservation-law form of the complete three-dimensional Navier-Stokes equations

initially is formulated in Cartesian coordinates. However, a Cartesian coordinate

system is entirely inappropriate for the geometrically complex nozzle configurations

of interest. The equations are transformed to the equivalent strong conservation law

form in a general system of curvilinear coordinates. Oneof the coordinates is oriented

in the general streamwise direction, and the viscous transport processes in that direc-

tion are neglected (parabolic approximation).

The boundaries of the flow region in which the equations are solved are indicated

schematically in Fig. 1-1. These include the nozzle walls, the symmetry planes, an

upstream inflow boundary, a downstream outflow boundary, and one or more lateral

outer boundaries. It is well knownthat the boundary conditions exert a dominant

influence on the solution to any system of partial differential equations. Theboundary

conditions that are applied at the various boundary surfaces also are discussed in
detail in Section 2.

In Section 3, the physical flow region depicted in Fig. 1-1 is mappedonto three-

dimensional rectangular computational domainby a boundary-conforming curvilinear

coordinate transformation. The transformation, i.e., the curvilinear coordinate

system and computational grid, is generated numerically as the solution to an elliptic
system of partial differential equations (Refs. 4, 10, 11, and 12). The boundary

conditions for the elliptic system are the desired locations of the grid points that lie

on the boundaries of the physical flow region. However, the original methodhas the

shortcoming that, in practice, it is difficult to control the spacingbetweengrid points
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in the interior of the region. It is especially important to have goodcontrol over the

interior grid spacing in the high Reynoldsnumber flows of interest here, where

adequateresolution of the steep flow variable gradients within wall boundary layers

and free shear layers demandsa locally refined grid.

The described shortcoming of the original method has been overcome. The modified

method presented in Section 3 yields an ellipticsystem whose solutionhas the

remarkable property that the grid point distributionin the interior of the flow region

is controlled entirely by the selection of the grid point distributionalong the boundaries.

The numerical method employed to solve the flow equations is discussed in detail in

Section 4. The basic method employed at interior points of the grid is an implicit, non-

iterative alternating-direction technique (Refs. 13 and 14). The accuracy of the numerical

solution in the physical domain depends to a great extent on the accuracy which which

the boundary conditions are represented numerically at the boundaries of the computational

domain. In Section 4, we formulate implicit difference equations for the boundary grid

points that are similar to those for interior points, but that embody the boundary condi-

tions given in Section 2. The boundary point equations have the same time accuracy as

the interior point equations, and are compatible with the latter in their spatial order

of accuracy.

Section 5 presents the results of numerical experiments that have been conducted to

test various aspects of the general method. A major portion of the experiments have

been performed to develop and verify methods of computing the boundary conditions

that are valid throughout the subsonic, transonic, and supersonic flow regimes. These

experiments played a major role in the formulation of several of the boundary conditions

given in Section 2, and of the boundary point difference equations given in Section 4.

Turbulence models that will be used to compute the effective viscosity coefficent p

and Prandtl number Pr in various subregions of the nozzle internal and external

flowfield are discussed in Section 6.
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Section 2

EQUATIONS AND BOUNDARY CONDITIONS

2.1 EQUATIONS IN CARTESIAN COORDINATES

The strong conservation-law form of the Navier-Stokes equations in Cartesian coordinates

can be written in the compact vector notation

y z

q = (p, pu, pv, pw, pE) T

f = (pu,p + pu 2
T

, puv, puw, pull)

g = (pv,pvu,p + pv 2 T, pvw, pvH)

h = (pw,pwu,pwv,p + pw 2 T, pwH)

E = e + (u 2 + v 2 + w2)/2

H = E + p/p (2.1)

where u, v, w are the velocity components in the coordinate directions x, y, z;

p is the density p the pressure, e the specific internal energy; and _, 0, w

represent the viscous stress and work terms for each coordinate direction. Presently

available algebraic turbulence models generally assume that the first and second

viscosity coefficients are related according to the Stokes hypothesis _ = -2 #/3. The

viscous stress, work, and heat conduction terms then can be written in terms of the

turbulent viscosity # and thermal conductivity k as follows.
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(2/3) (2u - v
x y - Wz)

v + u
x y

w + u
x z

(2/3) u (2u - v + v
x y - Wz) (Vx + Uy) + w (w x + Uz) + (k//z) Tx

(2.2a)

0 = p

"0

u + v
y x

(2/3) (2v
Y

w + v
y z

.u (Uy

- UX - WZ)

- u - w ) + w (w + v z) + (k/p) T+ Vx) + (2/3)v (2Vy x z y y

(2.2b)

50 = p

"0

u +w
z x

v +w
z y

(2/3) (2w
Z

U (U Z

- U - V )
x y

+ Wx) + v (v z + Wy) + (2/3)w (2w z - u - v) + (k/p) T
x y z

(2.2c)

Equations (2.1) are supplemented by the equation of state which, for a thermally and

calorically perfect gas, may be written in the form

p/p= RT = (T- 1) e = c2/T (2.3)

where R is the gas constant, T is the specific heat ratio, and c is the speed of

sound.
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2.1o i Non-Dimensionalization

The foregoing equations can be cast in dimensionless fore by introducing the normalized

flow variables

-- m

P = P/Poo , P = P/Poo ,

(u, v, w) = (u, v, w)/coo ,

= T/Too ,

2
C: oEIpoo

OO

(x, y, z) = (x, y, z)/L , t = coot/L (2.4)

where L is a reference length scale and the subscript Oo denotes some convenient

reference state. We define the Reynolds and Mach numbers at the reference state as

Reoo = pooVooL/poo Moo : Voo/'coo (2.5)

_fu 22 + v 2 + woo . Equations (2.1) to (2.3) then assume the dimensionlesswhere Voo : 00

form given below, where we have suppressed the overbars for simplicity. Eqs. (2.6)

and all equations throughout the remainder of the report are written in dimensionless

variables.

+_ ++'++_ : +_ (_+ _+ _z> (2.6a)

2
e = p/p = T = T (_]- 1)(_/p- V2/2) (2.6b)
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where

q

f

g

h

= (p, pu, pv, pw, e) T

2 T
= [pu, (p/y + pu ) , OUV, puw, u (P/7 + e)]

= [pv, pvu, (p/y + pv 2) , pvw, v (p/T + E)] T

= [pw, pwu, pwv, (p/y + pw2), w (p/y + e)] T (2.7)

(2/3) (2u - v - w )
x y z

V + U
x y

W + U
X z

(2/3) u (2 u
X

-1

- Vy - Wz) + v (v x + uy_) + w (w x + Uz) + [(T - 1) Pr] Tx

U + V
y x

(2/3)(2v - u -w)
y x z

W + V
y z

.U(Uy +v x) + (2/3) v(2Vy - U
X

-1

- Wz) + W(Wy + v z) + [(3' - 1)Pr] Ty
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"0

u + w
z x

v + w
z y

- u - v )(2/3) (2 w z x y

.u (u z + w x) + v (v z + w ) + (2/3) w (2w - uy z x

-1
- v ) + [(Y - 1)Pr] T

y z

2.2 TRANSFORMATION TO GENERAL CURVILINEAR COORDINATES

The task of solving Eqs. (2.6) numerically within a given flow region R bounded by

a closed surface S is simplified greatly by transforming the equations to a new

boundary-conforming curvilinear coordinate system (Refs. 1 to 5). Here, a boundary-

conforming coordinate system is one in which the boundary surface S is a coordinate

surface.

We introduce a time-dependent invertible mapping transformation of R onto boundary

conforming curvilinear coordinates (Refs. 3 to 6 ). Here the precise meaning of the

T

x, y, z, t -_ 4, _,T

T-1

= _ (x, y, z, t)

V = _ (x, y, z, t)

_t = _ (x, y, z, t)

"r = t

(2.8)

term "boundary-conforming" is that, in these coordinates, the boundary S is composed

only of segments of coordinates surfaces _ = const., 77= const., _ = const. That is,

2-5



the surface S has the time-invariant functional representation f (_, 77,_) = 0

independently of time, v. The mapping otherwise may be arbitrarily defined if it is

invertible and satisfies this constraint.

In applying this transformation to Eq. (2.6a) one usually retains the dependent variables

associated with the original Cartesian coordinate system.

Upon transforming to _, r/, _ coordinates with the aid of the chain rule for partial

derivatives, Eq. (2.6a)becomes (Refs. 3 to 7))

_ (_

= Jq

f = + + +_z hx

: _t_ + _x_'+ _y_ + _z_

= _t q + _+ + h
x y z

_x rTy co= cr+ O+_z

03 = O" + + 09
× y Z

+0 + O)

(2.9)

where J is the Jacobian of the inverse transformation T -1

j = a(x, y, z)
(f, 7, _)

(2.10)
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and where

A A A

_t = J_t ' _x = J_x ' _y = J_y ' etc. (2.11)

We observe that Eq. (2.6a) transforms into Eq. (2.9) only if the mapping functions

(2.8) satisfy identically the following relations (Ref. 6)

A A A

_x_ + r/x_ + _x_ = 0 (2,12a)

A A A

_y_ + + =rlyr/ _y[ 0 (2.12b)

A A A

_z_ + _zr/ + _z_ -- 0 (2.12c)

A A A

JT + _t_ + T/tT/ + _t_ = 0 (2.13)

One can verify by direct calculation that these relations hold analytically as long as

the mapping functions possess continuous second partial derivatives.

The mapping functions (2.8) need not be known analytically in order to obtain numeri-

cal solutions to the transformed Navier-Stokes equations (2.9). Once the 4, 7,

computational domain is covered by a finite-difference grid, the inverse transforma-

tion T -1 can be defined numerically in terms of the Cartesian coordinates x(T), y(T),

z(_) of the grid points, from which the partial derivatives x, y_, x_, y_, etc., are

computed by using difference formulas. The coefficients that appear in Eq. (2.9)

then can be evaluated from the following identities (Ref. 6):
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A

_'x = Yr1 z_-y_ zrl r/x = y_ z_ -y_ z_

= z x_-Z_Xrl fly = z_x_ -z_ x__'y 7?

_z = x y_ -x_Yrl 77z = x_y_ -x(y_;

_x = Y_ z - Yr? z_ _'t = - (gxxn" + _'yY'r + _'z Z'r)

.... x. + _y YT + _Z Z'r )z_ x z x_ _t ( x

_z = x_ Yr/ -x77Y_ _t = - (_xx'r + _yy'r + _z z'r) (2.14)

Care must be exercised, however, to ensure that the finite-difference representation
A A

of the spatial derivatives x_? y_, x, f_, g_, etc. is such that the identities (2.12)

hold true numerically (Ref. 7 ). Similarly, for time-dependent transformations

associated with moving boundaries, special measures must be taken to ensure that

Eq. (2.13), the "Geometric Conservation Law," also is satisfied numerically (Ref. 6 ).

The reason lies in the fact that violation of any of Eqs. (2.12) or (2.13) induces first-

order numerical errors in conservation of mass, momentum and energy.

2.3 PARABOLIC APPROXIMATION

For the nozzle flow problems of present interest, we shall assume that both the

Cartesian and the curvilinear coordinate systems are oriented with the x and

axes running in the general streamwise flow direction. Because the dominant viscous

effects are associated with the cross-stream directions _, _, we may employ the

so-called "parabolic approximation." In this approximation, we simply neglect all

viscous terms in the R. H.S. of Eq. (2.9) that involve derivatives with respect to _.

Before doing so, however, we shall examine the structure of the viscous terms.

A

Consider, for example, the quantity 0 defined in (2.9). Upon inserting _, 0, co

as defined below Eq. (2.7) and transforming to _, rl, _ coordinates with the chain

2-8



rule, one finds that the resulting equation can be split naturally into three terms,
each of which contains derivatives in a single coordinate direction

A

8 = _(_) + e(_) + 0(_) (2.15)

(V_ • V_)u_ + (_xV_ - 2/3 T/xV_) • V_

(V_ .V_)v_ + (_yV_ - 2/37)yV_) • V_

(V_ • V_)w} + (_zVV/ - 2/3 _zV}) • V_

(V_ • V_) [W/(7 - 1)Pr + V2/2]_ + [(V'" V})V_ - 2/3 (_" V_)V_] • _

(2.16a)

0

(v,} • vn) u,7 + 1/3 nx (vn • V)

(VT/ • VT/) v? + 1/3 _y (V_ • V )

(VT/. V_)w/ + 1/3 77z (V,?- VT/)

(V_ • VV) [W/(7- 1)Pr + V2/2] + 1/3 (v • vv) (v_ • v)

(2.16b)

0

(v_ • v_) u_

(vu • v_) v_

(vn • v_) w_

(Vu - V_) [T/(T- 1)Pr + V2/2]_

+ (_xVB - 2/3 _/xV_) • V7

+ ( _yV_/ - 2/3 _/yV_ ) • V

+ (_zV_] - 2/3 OzV_) • V_

+ [(_- V_ )VB - 2/3 (V'. VV) V_ ] • V_

(2.16c)
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where standard Cartesian vector notation is used:

= (u ,v ,wv = (u,v,w) , v = Ivl , v 7 )

W? = 0?x,'Ty,_/z) , etc.

Equations (2.15) and (2.16) have useful symmetry properties. For example, Eq. (2.16b)

defining 0(_) can be deduced directly from _ (_) in (2.16a)by making the simple substi-

tution _ -_ 77. Similarly, 0 (_') in Eq. (2.16c) can be obtained from (2.16a) by making

the substitution } _ [.

The transformed viscous terms _ and do each can be split in analogous fashion:

= ^ ¢_(r/) w(_) (2.17)_(_) + +

^ _(_) _(_) _(_)(Y _-- + + (2.18)

The individual terms in (2.17) can be deduced from Eq. (2.16) by making the substitu-

tions 0 -_ co, 77 -_ _'. Similarly, the terms in (2.18) can be deduced from (2.16) by

substitution of 0 -+ o, 7/ -_ _.

With Eqs. (2.15) through (2.18) in hand, we obtain the parabolic approximation simply

by neglecting all G-differentiated terms

9} = _(}) = ¢5(}) = 0 (2.19)

The Navier-Stokes equations (2.9) then reduce to

+ f_ + + h_ = Re + + + (2.20)
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2.4 CURVILINEAR COORDINATEGEOMETRYAND BOUNDARYCONDITIONS

2.4.1 Coordinate Geometry

Equation (2.20) is to be solved numerically, subject to certain admissible boundary
conditions that must be satisfied on the various computational boundaries illustrated

in Fig. 1-1. The curvilinear coordinate system (_,7/,_) is defined such that the

computational boundaries coincide with coordinate surfaces. We shall restrict atten-

tion to nozzle configurations that have either one plane of symmetry y = 0, or two

mutually perpendicular symmetry planes y = 0 and z = 0. The two types of con-

figuration are illustrated in Fig. 2-1. The curvilinear coordinate system, which may

be nonorthogonal, is oriented so that the _ coordinate runs in the general streamwise
direction. For convenience, the family of coordinate surfaces _ = const, generally

will be taken as planes normal to the Cartesian X-axis.

The upstream inflow and downstream outflow boundaries are defined to be members of

this family _ = const. (Fig. 1-1). The boundary-conforming cross-stream coor-

dinates _, _ are defined so that all nozzle walls either are members of one or the

other of the two families of coordinate surfaces _ = const, or [ = const, or are

composed of intersecting segments of both families _ = const, and _ = const. The

lateral outer computational boundary is defined in similar fashion as a surface

_? = const, or _ = const., or as a composite of the two. The symmetry planes are

also members of one of the latter families. For example, the symmetry plane in

Fig. 2-1a is represented as a surface _? = const., whereas in Fig. 2-1b, one sym-

metry plane is a surface _ = const., and the other is a surface [ = const. The

boundary conditions that hold at the various boundary surfaces are as follows.

2.4.2 Wa[l Boundary Conditions

At the nozzle walls, the velocity vector must vanish and either the wall temperature T w

or heat flux Qw may be specified. For the latter, we restrict attention to the

adiabatic wail case Qw = 0.
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and

or

u = v = w = 0 (2.21)

T = T w (2.22)

-k(_. VT) = 0 (2.23a)

where n is the local vector normal to the wall. For a wall that coincides with the

surface 77 = con,st., the normal vector is n = V_, and Eq. (2.23a) becomes

VT? • VT = (V_ "V_) T_ + (V_ • Vrl) T + (Vrl • '7_*) T_. = 0

However, the term involving T_ is neglected in the parabolic approximation, and the

adiabatic wall boundary condition is then

(VT? • W?) T + (V_? • V_) T_ = 0 (2.23b)

The corresponding boundary condition for an adiabatic wall that coincides with the

surface _" = const. (see Fig. 2-1a) can be deduced from (2.23b) by making the sub-

stitution ,7 -_ _*, _ _ 7.

2.4.3 Symmetry Boundary Conditions

At a symmetry plane, the normal component of velocity is an odd function of position

relative to the plane, whereas all other flow variables are even functions. The

Cartesian coordinates also are either even or odd at a symmetry plane. For example,

at the symmetry plane _ = 0 in Fig. 2-1a, y and v are odd functions of 77;

whereas x, z, and all flow variables other than v are even

Y(-_?) _--Y(n) , v(-_?) = -v(B) (2.24a)
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x(-_) = x(n) , z(-7) = z(7) , u(-_) =

w(-_) = w(7) , p(-_) = p(7) , etc.

u(7)
(2.24b)

As is well known, any odd function of 7 must vanish at 77 = 0.

This information can be used in Eq. (2.20) to evaluate the 7-differentiated terms at

the symmetry plane 7 = 0. One need only apply the well-known theorem which

states that the derivative of an even function is odd, the derivative of an odd function

is even, the product of an even and an odd function is odd, and the product of two even

or of two odd functions is even.

It then follows from Eq. (2.24) that, for each of the vectors _, b(7), and 0 (_), the

third component is even, whereas the other four components are odd functions of 7.

The derivative of the third component thus is odd, and hence must vanish at 77 = 0.

g3 7 L 3 J7 7
at 77 = 0 (2.25)

The derivatives of the other four components are even, and can be evaluated in the

one-sided sense. For example, for the first component of _, we have

1 7 7 + 7 _0+
(2.26)

The horizontal symmetry plane _*= 0 in Fig. 2-1b can be treated in similar fashion.

2.4.4 Freestream Boundary Conditions

If the external freestream conditions are selected as the non-dimensionalizing refer-

ence conditions in Eqs. (2.4), then the following boundary conditions must.be satisfied

in the asymptotic sense at infinite distance from the nozzle:
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p = 1 , p = 1 , u = uoo (2.27a)

_(,) _(_) = _5(_) = ^(_)= 09 = 0 (2.27b)

It is assumed that the x-axis is aligned with the freestream velocity vector, so that

v = w = 0. In practice, boundary conditions (2.27) must be applied at lateral
oO OO

outer computational boundary located a finite distance from the nozzle (Fig. 1-1), and

it is not always permissible to impose the remaining freestream conditions v = w = 0

at that boundary. Numerical experiments have shown difficulties in converging to a

time-asymptotic steady state solution for subsonic and transonic flow when the latter

conditions are imposed (see Section 5). In general, the velocity components v and

w mast be computed at the boundary as well as in the interior flow region.

2.4.5 Upstream Inflow Boundary Conditions

To discover what boundary conditions are permissible at the inflow boundary, we

appeal to the quasi-one-dimensional unsteady method of characteristics applied to

Eq. (2.20). According to the method, the five-component vector equation (2.20) is

regarded as a hyperbolic system of partial differential equations in T and _. The

and _ differentiated terms are treated simply as inhomogeneous "forcing function"

terms. The analysis is cumbersome; we shall omit the details and merely summarize

the major results for the case where } = }(x) only, i.e., where the inflow boundary

is a plane normal to the x-axis.

The hyperbolic system of five scalar equations has three distinct characteristics

k i = d_/dr, one of which is of multiplicity three

X 1 = h 2 = X 3 = U_x

)`4 = (u + C)_x (2.28)

)'5 = (u - C)_x
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where _x > 0 for any non-singular coordinate transformation (2.6). The charac-

teristic form of the system is

vr + }`1 v} = fl (2.29a)

wv + }`lW} = f2 (2.29b)

(PT + }`3P} ) - c2(pv + }`3P} ) = f3 (2.29c)

(PT + }`4P} ) + pC(Ur + }'4u}) = f4 (2.29d)

(PT + X5P_) - pC(Ur + X5u_) = f5 (2.29e)

where fl ' f2 ' " " " are cumbersome functions of the flow variables and of the _- and

- differentiated terms in (2.20), and where the operators

represent directional derivatives along the characteristics.

If u is supersonic (u > c), all five characteristics (2.28) have positive slope in the

- r plane; i.e., all characteristics are directed downstream. We conclude that all

flow variables may be specified a priori as inflow boundary conditions whenever u > c.

For subsonic inflow u < c, all characteristics remain of positive slope except }`5'

which has negative slope. Information propagates upstream along that characteristic

from the interior of the flow region toward the inflow boundary, and the last of

Eqs. (2.29) yields one relation among the five independent flow variables. Thus, four

independent quantities may be specified as boundary conditions. Of these, one sees

from Eqs. (2.29a ,b) that two must specify the transverse velocity components or,

equivalently, the velocity vector's direction cosines. It appears that some freedom

exists in the choice of the remaining two boundary conditions. However, Eq. (2.29c)

may be recognized as the isentropic relation between pressure and density perturbations
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along a "streamline." This suggeststhat the entropy or, equivalently, the stagnation

pressure, may be specified as an inflow boundary condition. On physical grounds, we

elect to specify the stagnation temperature as the remaining inflow boundary condition.

The boundary conditions on the stagnation pressure Po(_= 0,7,_') and stagnation

temperature T (} = 0, _?,_') provide two independent algebraic relations among theo

local values of the flow variables at each point of the inflow boundary } = 0. These

relations can be represented in terms of the particle-isentropic flow equations

To/T = 1 + (_ -I) M2/2

P/Po = (T/To)7/(7 -I)

where M 2 = V2/T- is the local Mach number written in terms of the dimensionless

velocity and temperature [ Eqs. (2.4) ]. With the aid of the equation of state (2.6b),

these relations can be written in the form

To = (7-1) ['le/p- ('1-1)V2/21 (2 30a)

(2.30b)

The described inflow boundary condition results for the three-dimensional "parabolized"

Navier-Stokes equations (2.20) are essentially the same as those presented in Ref. 8

for two-dimensional inviscid flow.

2.4.6 Downstream Outflow Boundary

Arguments similar to those given above for the upstream inflow boundary may be used

at the outflow boundary. For u > c, all characteristics have positive slope and

emanate from the interior toward the boundary. The flow variables at the boundary

are completely determined by the interior flow, and no boundary conditions may be
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specified. For u < c, the single characteristic k5 emanates from the boundary,

and one boundary condition may be specified. It is common to specify the pressure

as equal to its freestream value (Refs. 8 and 9).

p = 1 when u ( c (2.31)

However, we shall employ this boundary condition only when dealing with the internal

flow in an isolated nozzle; that is, when the outflow boundary is located at the nozzle

exit pla__e. For general cases involving both internal and external flow where the

outflow boundary is located downstream of the nozzle exit, we shall specify no outflow

boundary conditions. All flow variables at the outflow boundary will be computed from

Eqs. (2.20) as described in section 4.2.2. This approach has the following

j ustification°

The system (2.20) is not strictly hyperbolic because the viscous terms on the R. H. S.

have parabolic qualities. Parabolic systems may be viewed as possessing degenerate

vertical characteristics d_/dT = 0 along which information is propagated instan-

taneously from the lateral outer boundary. Freestream pressure is imposed at the

latter boundary [see Eq. (2.27a)], and we rely on the parabolic behavior of the

equations to relay the freestream pressure information to all points of the outflow

boundary. The numerical experiments described in Section 5 attest to the validity of

this approach.

2-18



Section 3

GENERATIONOF COMPUTATIONAL GRIDS

The generation of computational grids suitable for carrying out accurate numerical

solutions to the three-dimensional Navier-Stokes equations is currently the subject

of intensive research. For a wide class of nozzle configurations that includes the

configuration depicted in Fig. 1-1, a three-dimensional grid can be built up by

constructing a sequence of two-dimensional grids in successive cross-sectional

planes. For each cross-sectional plane between the upstream inflow boundary and

the nozzle exit, a two-dimensional grid must be generated both for the flow region

internal to the nozzle and for the flow region outside the nozzle. The two flow regions

are illustrated in Fig. 3-1a for a nozzle whose interior and exterior walls have a

super-elliptical shape described by the equation

(y/a) N + (z/b) N = 1 (3.1)

where a, b, and N may vary with position, x, along thenozzle. For the present,

we shall restrict attention to nozzle configurations that have two mutually perpendicular

planes of symmetry, and shall assume that the Cartesian coordinate system is oriented

so that the symmetry planes coincide with the coordinate planes y = 0 and z = 0,

respectively.

Two substantial advantages are gained by introducing a boundary-conforming

curvilinear coordinate transformation that maps the physical flow region in the cross-

sectional plane (y, z) onto a rectangular computational domain (7, D. First, a

uniform rectangular grid can be employed in the (77, _) domain that simplifies the

numerical finite-difference representation of the flow equations. Second, the boundary

conditions can be computed more easily and more accurately. Because of the boundary-
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conforming character of the mapping transformation peripheral grid points lie directly

on the boundaries. This avoids the tedious and inaccurate interpolation or extrapolation

procedures that would be required to compute or to impose boundary conditions when

the boundaries lie betweengrid points.

Thompson, Thames, andMastin (Ref. 4) have given a general method for generating

suchboundary-conforming coordinate transformations. In the method, one computes

the (y, z) coordinates of the grid points in physical spaceas solutions to an elliptic

system of partial differential equations. The equations are formulated in a rectangular

computational domain 07, _), and are solved numerically over a uniform, rectangular

grid in that domain.

Figure 3-2 shows an example of such a mapping of the region interior to the nozzle of

Fig. 3-1 onto a rectangular (_, _) computational domain. Points A, B, C of Fig. 3-1

map onto the corners A', B', C' of the computational domain in Fig. 3-2, where the

point B is placed at the location where the curvature of the nozzle wall is greatest.

This mapping produces a quasi-rectangular grid in the physical domain of Fig. 3-1

when the Thompson, Thames, Mastin (TTM) method is applied to generate the grid

numerically. The TTM method employs the following inhomogeneous Laplace equations

as the generating system

These equations are transformed to

dependent and independent variables.

equations

ay_T I - 2 fly_?_

ozz - 2

(3.2)

[, 7? coordinates by interchanging the roles of

This yields an elliptic system of quasilinear

= _ + Qy_)+ 7Y_ j2 (PY_7

= - + Qz_ )+ Yz_ j2 (Pz
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and

2 2
y_ +z_

fl = y_ y_4- z z_

2 2
_' = Yr/ + zr/ (3.3)

where J denotes the Jacobian of the transformation

j = a(y, z)
a (r/ _:) = Yr/ z t- Y_ z (3.4)

Equations (3.3) are solved numerically on a uniform, rectangular grid AT , A[.

For a simply connected physical domain such as the nozzle interior, Dirichlet boundary

conditions may be specified over the entire closed boundary O r A' B r C wO _ of the

computational domain. The boundary values are the (y,z) coordinates of the physical

grid points that correspond to each of the mesh points (Vk' _ ) on the boundary of the

rectangular computational domain.

The physical grid points may be spaced as desired along the boundaries of the flow

region. However, the major shortcoming of the TTM method is that, in practice, it

is difficult to control the spacing between grid points in the interior of the flow region.

The interior grid spacing is governed primarily by the elliptic system (3.3) itself.

The boundary values have a strong influence on the grid spacing only in the immediate

neighborhood of the boundaries, despite the strongly elliptic character of Eqs. (3.3).

It is especially important to have good control over the interior grid spacing in the high

Reynolds number flows of present interest, where adequate resolution of the steep

velocity gradients within wall boundary layers and free shear layers demands a locally

refined grid.
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Various forms of the source terms P, Q in Eqs. (3.3) havebeen devised that contain

adjustable parameters and that provide somemeasure of control over the interior

grid spacing. This adhoc approach has beenused with success in particular

applications {Refs. 10, 11, and 12), but the forms of these terms and the values of the
adjustable parameters are highly problem-dependent. No generally useful method

has yet beendevised that can be relied uponto provide an effective means of grid

control for a wide class of boundary geometries.

An example is given in Figs. 3-3 and 3-4 to illustrate the difficulty of controlling the

grid in the nozzle interior. Figure 3-3 displays a quasi-elliptical grid generated by

the TTM method by using simple Laplace equations (P = Q = 0). The parameters of

the super-ellipse arc CD are N = 1.55, b/a = 1.4. The quasi-elliptical shape of the

grid was achieved by specifying the boundary values so that the regular point B on

the lower boundary AC of the physical domain maps onto the lower right-hand corner

point of the rectangular computational domain of Fig. 3-2. The point B plays a role

akin to that of the focus in the classical system of orthogonal elliptical coordinates.

Equally spaced boundary values (y, z) were specified along each of the boundary

segments AB, BC, CD, and DA. The resulting grid is smooth and regular in the

interior, and would be suitable for inviscid flow computations. However, this grid

would be incapable of resolving the nozzle wall boundary layer in a viscous flow. In

an attempt to obtain a locally refined grid near the nozzle wall, an exponential dis-

tribution of boundary values was specified along the boundary segments AB and OC.

The resulting grid, displayed in Fig. 3-4, is wholly unsatisfactory. Evidently, the

influence of the boundary values does not penetrate very deeply into the interior,

in spite of the elliptic character of Eqs. (3.3). The interior grid is affected primarily

by the generating equations, rather than by the boundary values.

Equally poor results are obtained whenever highly stretched boundary values are used

with P = Q = 0. A further example for a quasi-rectangular mapping of a high-degree

super-ellipse (N = 10} is displayed in Fig. 3-5.
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The described shortcoming of the TTM method has been overcome by devising general

source terms P and Q that are computed from the Dirichlet boundary values, and

that vary continuously throughout the computational domain. This results in an elliptic

generating system whose solutions have the remarkable property that the grid point

distribution in the interior of the physical flow region is controlled entirely by the

user's selection of the grid point distribution along the boundaries. This is accomplished

by choosing source terms such that Eqs. (3.3) possess exponential solutions, although

the terms themselves are not exponentials functions. The terms contain arbitrary

parameters that are evaluated locally at the boundaries of the computational domain

by using a finite-difference representation of the limiting form of the system (3.3) that

is valid at the boundaries. Interpolation of these parameters into the interior from the

boundaries then defines the parameters at each mesh point of the computational domain.

Numerical solution of Eqs. (3.3) by standard successive line over-relaxation (SLOR)

then results in a grid throughout the physical domain that is controlled entirely by the

selection of grid points on the boundaries of that domain.

The source terms have the form

where the parameters _v, ¢ are yet to be specified.

Eq. (3.3) assume the form

(3.5)

Upon introducing these terms,

+ Cy:) = 0

+ _ (z_ + _bz_) = 0 (3.6)
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One can verify easily that Eqs. (3.6) possess exponential solutions if the parameters

_0, ¢ are locally constant. Given a set of boundary values (y, z) on the boundary of

the computational domain, one can determine the parameters by requiring that the given

boundary values satisfy appropriate limiting forms of Eqs. (3.6) along the boundary

of the computational domain. For example, along either of the vertical boundaries

- const, in Fig. 3-2, the limiting form of Eqs. (3.6) is

Along 7? = const.

y_g + _by_ = 0 (3.7a)

z_ + _bz_ = 0 (3.7b)

Similarly, the limiting form for horizontal boundaries _ = const, is

Along _ = const.

y_ + Cy_ = 0 (3.8a)

+ = 0 (3.8b)z Cz

For the quasi-rectangular mapping of the nozzle interior shown in Fig. 3-1 onto the

computational domain shown in Fig. 3-2, a finite-difference representation of

Eq. (3.7b) can be used to compute the parameter _b locally at each mesh point along

the vertical boundaries V = const.

¢(7, _) = - z_/z_ (3.9a)

(z_) = (Zk, _+1 - Zk, g-1 )/2 A_ (3.9b)
k,

(z_[)k,l = (Zk,_+l - 2Zk,_ + Zk,__l)/A_2 (3.9c)

The parameter _(_, _) is evaluated similarly from Eq. (3.8b).
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For more complicated mappings one or the other of Eqs. (3.7) may lead to an in-

determinate equation for _. For example, the quasi-elliptical mapping shownin

Fig. 3-3 is such that Eq. (3.7b) is indeterminate along the right-hand vertical boundary

of the computational domainof Fig. 3-2, and Eq. (3.7a) must be used in place of

(3.7b) to evaluate ¢. For an arbitrary nonsingular mapping, one can showthat one

or the other of Eqs. (3.7) is always determinate at eachpoint of the boundary, and

defines a unique value of the parameter _ at that point. This follows from the fact

that, along the boundary, y and z are related by the equation f(y,z)=0 that

describes the geometric shapeof the boundary curve in the physical domain. Thus,

in principle, either of Eqs. (3.7) can be used to compute the parameter _. In practice,

the best results are obtained by employing Eq. (3.7a) locally at points where y[ - z_ ,

and Eq. (3.7b) locally at points where y_ < z_. A similar statement holds for the
parameter _ in Eqs. (3.8).

Oncethe parameter _ is defined at each mesh point of the vertical boundaries

= const, in the computational domain, its value at interior mesh points can be

computed by linear interpolation along horizontal mesh lines [ = const. Similarly,

is computed by interpolation between the boundaries [ = const, at which it is defined

by Eqs. (3.8). Equations (3.6) then are solved by SLOR iteration in the computational

domain to generate the grid in the physical domain.

Figure 3-6 shows the physical grid generated by the described technique for the interior

and exterior flow regions of the super-elliptical nozzle geometry illustrated in Fig. 3-1.

The grid, highly refined near the nozzle walls to resolve the wall boundary layers, was

generated simply by inputting an exponential grid point distribution along each boundary

of the computational domain illustrated in Fig. 3-7b. Observe the smooth, regular

character of the grid, the near-orthogonality of the grid lines to the nozzle wall, and

the nearly uniform spacing between the wall and nearest wall-like grid line over the

whole length of the wall.
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Fig. 3-6a Cross Section of Grid for Interior and Exterior Flow Regions of a
Super-Elliptical Nozzle
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Fig. 3-6b Magnified View of Grid Near Corner of Nozzle
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Although the grid illustrated in Fig. 3-6 was generated using an exponential distribution

of grid points along the physical boundaries of the flow region, the present technique is

valid in general for anyarbitrary boundary point distribution. In essence, the numerical

evaluation of the parameters _, ¢ at the boundaries simply is a convenient way to

construct a curve-fit to the boundary values with local embeddedexponential functions.

The interpolation of theseparameters into the interior of the computational domain

simply extendsthe range of the curve-fit parameters into the interior. The elliptic

equation system then merely provides a reliable, automatic means for translating the

parameters into a local exponential curve-fit at eachinterior point that reflects the

boundary value distribution, and that has the properties of regularity and m_ntonicity

required of non-singular coordinate transformations.

For an arbitrarily selected cross-sectional plane x " const., the described procedure

automatically generates a boundary-conforming curvilinear coordinate transformation

T [Eqo (2.8)] that maps the flow region boundedbetweenthe symmetry planes and

the lateral outer boundaries onto a rectangle 0 - T/__7?max, 0 -< _ -< _max" The
latter then is subdivided into a rectangular grid of uniform spacing /xU, /x_. The

coordinates of the grid points are then

77k (k - 1) A_ 1 -< k -< K (3.9a)

_£ = (_- 1)A_ 1 --< _ --< L (3°9b)

Repetition of the procedure for a sequence of cross-sectional planes x. defines a
3

three-dimensional transformation that maps the entire nozzle flow region of Fig. 1-1

onto a rectangular solid 0 ....< } <_max, 0 <v <,Tma x, 0 -< _ -< _max" Auniform

grid spacing A_ then completes the definition of the computational space

_j = (j - 1) A_ 1 _ j --< J (3.9c)
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Without loss of generality, we may choose

A_ = Av = A_ = 1 (3.10)

so that the triplet of indices (j, k, _) describes uniquely the coordinates of each grid

point in the computational space. For general mappings, each computational grid

point has an image point (Xj,k, _ , Yj,k,_' Zi,k,_). in the physical space illustrated

in Fig. 1-1o However, note that the mapping used here employs cross-sectional

planes. Consequently, the x-coordinate of a grid point depends only on the index j o

Furthermore, we shall assume that the physical grid is stationary; i. e., that the

mapping functions (2o 8) are independent of time t. Time-dependent mappings are

useful in problems that involve free boundaries such as external shock waves (see

Ref. 6 ), but are unnecessary in the present application.

The coordinates x. define the physical location of the cross-sectional planes, and
J

may be selected arbitrarily. In each such plane j, the coordinates Yj,k,_ and
of the grid points in physical space are computed numerically from the

Zj,k,_
elliptic system (3.3). The manner in which these numerically-generated coordinate

transformations are used in flowfield computations is explained in Section 4, which

presents the difference equations derived from the flow equations that have been

summarized in Section 2.
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Section 4

IMPLICIT DIFFERENCE EQUATIONS AND SOLUTION TECHNIQUE

The Navier-Stokes equations (2.20) are to be solved numerically in the computational

space defined in Section 3, subject tothe boundary conditions given by Eqs. (2.21)

through (2.31). We shall employ an implicit numerical method to avoid the severely

limited time stepsize that would be imposed by the numerical stability bound of an

explicit method. For the latter type of method, one can show that the maximum stable

time step allowed by an explicit scheme is proportional tothe smallest distance

between any two grid points in physical space, whenever that grid spacing is suffi-

ciently fine to resolve accurately the thin viscous wall boundary layers and free shear

layers in the nozzle flowfield. The resultingly great number of time steps needed to

attain convergence to the desired steady-state solution easily can lead to impractically

long computer runtime. Properly formulated implicit methods are free of such severe

numerical stability criteria.

The numerical methods developed by Beam and Warming (Ref. 13) and by Briley and

MacDonald (Ref. 14) basically are similar in their use of implicit time-differencing

and of alternating direction techniques (spatial operator factorization) for the multi-

dimensional Navier-Stokes equations. Beam and Warming first applied the method to

the conservation-law form of the full Navier-Stokes equations for two-dimensional

laminar flow in Cartesian coordinates. The method was combined with the general

mapping in Eq. (2.8) by Steger (Ref. 3) for two-dimensional plane flow; by Kutler,

et al. (Ref. 15) for axisymmetric flow; and by Pulliam and Steger (Ref. 7); and by

Thomas and Lombard (Ref. 6) for three-dimensional flow. However, the latterfour

references employed the "thin-layer" approximation tothe Navier-Stokes equations in

which the viscous terms associated with only one of the three coordinate directions are

retained. The thin layer approximation is obtained by dropping the firstthree terms

from the R. H.S. of Eq. (2.20). We shall apply the Beam-Warming method to Eq. (2.20)

itself. We derive firstthe difference equations for interior grid points. The boundary

conditions require special treatment, and will be dealt with later in Section 4.2.
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4.1 INTERIOR GRID POINTS

In Ref. 13, Beam and Warming approximated the spatial derivative terms in the

Navier-Stokes equations by standard second-order accurate central difference

operators, and employed general implicit time-differencing of either first- or

second-order accuracy, depending upon the choice of a parameter. We shall employ

the first-order accurate Euler-implicit time-differencing, since we seek only the

asymptotic steady-state solution. The accuracy of the steady-state numerical

solution is governed by the spatial difference operators (Ref. 13).

4.1.1 Time Differencing

The first-order accurate implicit time-differenced form of Eq. (2.20) is

+ + _ + = Re 1 _(_) + _(_ n+l + a _(_) +_-_"8 _(T/ n (4.1)

where the superscript

difference operator

n denotes the time level,

AnA_ = _1n+l - q

n+l n
AT = T -T

A is the classical forward time

(4.2)

and, for later convenience, we have switched from the subscript notation to the

standard partial differential operator notation for spatial derivatives.

Note that the viscous cross-derivative terms-the terms in the second set of brackets
n

in Eq. (4.1)-are evaluated explicitly at time r , whereas all other terms are evalu-
n+l n

ated implicitly at the advanced time T = T + AT (Ref. 13). As shown in the latter

reference, this treatment of the cross-derivative terms does not compromise the

stability of the numerical method. The remaining terms are locally linearized in time

by using local Taylor series expansions. For the inviscid flux vectors f and _, the

linearization is
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_n+l = _n + FnA_t + ...

^n+l An _Ig = g +GnA + ...

_n+l = In + HnA_ _ ...

(4.3)

where F, G, H, are the Jacobian matrices

F = a /afi G = a_/afi H = (4.4a)

It follows from Eqs. (2.9) that the Jacobian F is given by

F = }tI + }x F' + }yG' + }zH' (4.4b)

F' = 3f/3q G' = 3gfi)q H' = 3h/aq (4.4c)

I = Identity matrix (4.4d)

The corresponding expressions that define matrices G and H can be obtained from

(4.4b) by the substitutions } -+7/ and } -+ _',respectively.

The Taylor series expansions given in Eq. (4.3) are valid only if the coordinate

transformation (2.8) is independent of time

t = _t = _'t = 0 (4.4e)

This implies that the grid is stationary in physical space (x, y, z). The reader is

referred to Ref. 6, where the general case is treated for moving grids associated

with time-dependent coordinate transformations.

The viscous terms are linearized similarly as follows:

4-3



= + A_ + (4.5a)

= + SnA_ + ... (4.5b)

where R,S are matrices whose elements are differential operators. The notation

such as RAq thus is to be interpreted not as the product of a matrix R and a vector

_(], but rather as a matrix operator that operates on the vector A_. The expressions

that define the operators R,S are derived in Appendix A.

The expansions (4.3) and (4.5) allow Eq. (4.1) to be written in the operational form

÷ - Rels : r (4.6)

where the linear operator notation is to be interpreted as follows:

(4.7)

That is, the spatial differential operator acts upon the product FnA_ and not upon the

matrix F n itself [cf. Eqs. (4.5)and (A.6), and Ref. 13]. TheR.H.S. of Eq. (4.6)

consists of the spatially differentiated terms in Eq. (4.1), evaluated at time level n

r = -At + _ - Re 10( _ +

(4.8)

The various terms in Eq. (4.8) are grouped in a fashion that is convenient for the

spatial differencing to be performed later.
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The final form of the time-differencing algorithm is obtained by noting that the

spatially three-dimensional operator on the L.H.S. of (4.6) can be factored into a

product of one-dimensional operators, with a remainder term that is of the same

order as the temporal truncation error of (4.6) itself (Ref. 13). The factored

operator equation is

n

A_l = _n (4.9)

Although the three operators are not commutative, the truncation error is of second

order in AT for any arrangement of the three factors.

Once the spatial derivative operators are replaced by finite-difference operators, the
^n+l

solution vector q is obtained through the ADI (Alternating Direction Implicit)

sequence

+ Ar
An

= r

[I (_ _R)] n
+ Ar G - Rel A_* = A_**

(4.10)

[I +At (_ H - Re1 _ s/In Aq = A_*

An+l An
q = q +A_

where the operators in parentheses in the second and third factors of Eq. (4.9) have been

rearranged in a form more convenient for spatial differencing.
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4,1.2 Spatial Differencing

The spatial differencing of Eqs. (4.10) can be represented conveniently in terms of
classical difference operators. We shall employ the half-mesh shift operator E1/2

and two central operators: the averaging operator tt = "(E1/2 + E-1/2)/2, and the

central difference operator 5 = E 1/2 - E -1/2. For a mesh" function f defined at

mesh points j, the operators are defined as follows (Ref. 16):

E -+1/2 f. = f. (4. lla)
j ] +-1/2

tlfj = (fj+lt2 + (4.11b)

However, we must deal with three-dimensional mesh functions such as fikl" To avoid

confusion about the spatial direction in which a given operator acts, we shall append a

subscript to indicate that direction. For example, we have

Pkfjkl = tfj,k+l/2,1 + fj,k-1/2,1)/2 (4,12)

The single subscript also will serve to distinguish between the averaging operator and

the viscosity coefficient, both of which are represented by the symbol t_.

_n
We consider first the spatial differencing of the term r in the first of Eqs. (4.10) as

defined in Eq. (4.8). The superscript n indicating the time level will be suppressed

for brevity. The first-order spatial derivative operator 0/_} of the first term in

braces in Eq. (4.8) is represented as follows by a central difference formula that is

accurate to second order in the spatial grid spacing A}.

0t]0-'_'f_ (l.ij 5j i:jkll/Al_---(f"j+l,k,l - ,<, (4.13a)

h_ = 1
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The increment A} will be omitted from this and from subsequent spatial difference

formulas by virtue of Eq. (3.10). The derivative operators b/_77 ,_/a_" of the second

and third terms in braces in Eq. (4.8) are represented by the corresponding central

difference oparators

_77 Jjkl
(4.13b)

Jjkl

The same difference operators are used to represent the derivatives that enter into the

vectors _(_') and ¢_(_7). For example, the first term in the second component of the

vector 0({') is [Eq. (2.16c)].

pJ (Vr/" U_') U_. _ IpJ (rlx_x +rly_'y + _?Z_Z] pl 5
jkl 1Wjkl

(4.13d)

One sees from Eq. (2.16b) that the first term enclosed by the last set of brackets in

Eq. (4.8) involves repeated derivatives with respact to 7?. Both the outer derivative

a/_7 of the term in question and the inner derivatives that enter into 0(_?) in

Eq. (2.16b) are represented by the central difference operator 5 k

5 k (4.14a)

2
Thus, quantities such as a/a_? (t_J Iv_l _U/_,7) that appear when the term

written in expanded form are differenced as follows:

M(_)/_ is

± (.j iv,12 (.J (4.14b)

The last term in Eq. (4.8) is differenced similarly in terms of the operator 5 1

(4.14c)
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Each spatially differentiated term on the left of Eqs° (4.10) involves either an ordinary

matrix such as F or a matrix of spatial differential operators such as R° Each such

matrix is the Jacobian of one of the terms that comprise the quantity _ in (4.8). For

consistency, the spatial derivative operators that appear in each term on the left of

(4.10) are represented by the same difference operators that are used for the corre-

spanding term of _ in (4.8). For example, in the first of Eqs. (4.10), the term

involving the Jacobian of the inviscid flux vector f in Eq. (4.8) is differenced as

a

_-(F_ pjSjF (4.15)

is (4° 13a)°

Similarly, the terms (0/_v)G and (a/a_)H are differenced as in Eqs. (4.13b) and

(4.13c), respectively. Finally, Eqs. (4.14a) and (4.14c) are used for the last term in

parentheses in each of the second and third of Eqs. (4. i0).

When the eurvilinear coordinate system and the computational grid are generated

numerically as described in Section 3, the grid generation procedure yields only the

x, y, z coordinates of each grid paint in physical space. The "metric coefficients"
^

gy etc. then must be computed from Eqs. (2.14). This can be accomplished byX'

using the central difference operator g5 to represent the spatial derivatives. The

final difference equations for interior paints then take the operational form

An

[I +dl, rp, j(SjF] n A_tj*k*l = rjk 1 (4.16a)

[, n+AT (gkSk G - Rel6k Aqjkl^* = A_**qjkl (4.16b)

- A_jM = Aqjk I (4.16c)

^n+l ^n ,,

qjkl -- qjkl + Aqjkl (4.16d)
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where

%

_ ReI [5k0( ) (4.17)

and where it is understood that the spatial derivatives involved in 0(S') and

differenced as described following Eq. (4.13c), and those involved in _(r/),

and S are differenced according to Eq. (4.14).

Each step of the ADI sequence (4.16) involves the solution of a linear system of equa-

tions having a block-tridiagonal coefficient matrix. For example, upon applying the

operator on the L.H.S. of Eq. (4.16a), we obtain

-AT / n ^_,\ A_** ._ /_n_^** _ ^nT _F Aq__l ) + , +- _ zxqj+I) = rj , 2 a j a J- 1
(4.18)

where the subscripts k,1 have been suppressed. The block-tridiagonal structure is

n (the blocks) are 5X5
readily apparent, inasmuch as the Jacobian matrices Fj +1

square matrices.

However, the system of Eq. (4.18) is incomplete; it involves only J-2 equations among

the J unknown values of ACI**. The missing equations are those for the boundary points

j = 1, J. To close the system, Steger (Ref. 3) and Pulliam and Steger (Ref. 7) simply

assume AQ_* = ACIJ* = 0 ; i.e., that the flow conditions at the boundaries do not

change over a time step. After the sequence (4.16) is completed for interior points,
...>

they then update the values of q at the boundaries by ad hoc methods that are intended

to satisfy the boundary conditions at steady state. This time-lagging approach implies

only a zero-order time accuracy at the boundaries. The approach does not necessarily

degrade the accuracy of the steady-state solution, depending on the updating procedures,

but it may retard the rate of convergence to steady state. The numerical experiments

described in Section 5 suggest that this is the case.
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Rather than use the time-lagging approach, we follow the approachtaken in Ref.

andformulate implicit difference equationsfor the boundary grid points that are

similar to those for interior points, but that embodythe boundary conditions of

Section 2.4.

15,

4.2 BOUNDARYPOINTS

In this subsection, we fornmlate boundary point-difference equationsthat have the same

time accuracy as the interior point equations, and that are compatible with the latter
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In the finite volume method, the value of f

values at the two neighboring grid points

at a cell face is defined as the average of

f" + 1/2,k, _ = ( k_ + = (4.20b)j + 1,k, + 1/2, k, _

When the left-hand equality of (4.20b) is substituted into that of (4.20a), the resulting

equation is identical to Eq. (4.13a); namely, the central difference that is obtained by

applying the operators 5.j and #j in sequence. Similar results hold for all the spatially

differentiated terms of Eq. (4.1). Furthermore, by the mean value theorem, the first

term in the volume integrated version of (4.1) represents the time derivative of the cell-

averaged value of q, and is properly located at the cell centroid; i. e., at the grid

point j, k, _ (Ref. 6 ). This geometrical interpretation simplifies the task of devising

boundary-point difference operators that are consistent with the central differences

employed at interior points. We consider first the outflow boundary _ = _max"

Outflow Boundary. Associated with each point of the outflow boundary is a half-cell,

as illustrated in Fig. 4-2. The centroid of the half-cell is indicated by the asterisk.

For the outflow boundary, the only exterior derivative in Eq. (4.1) is the first term

in parentheses on the L. H.S. The natural differencing of this term that is compatible

with the use of (4.20a) at the adjacent interior point is

_]j (fj - _j _ 1/2)/(A_/2) = V._j

A_ = 1 (4.21)

where the indicated equivalence to the backward difference operator of Eq. (4.19b)

follows from Eq. (4.20b). The time derivative term in (4.1) must be applied at the

centroid of the half-cell

A

_3 T/j A T
(4.22a)
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where

jkl = -At Uj6jf + PkSk _ -

+ _1_11h - Rel_(_ !

Re I 0(_)]

_ Re I [Sk _(n) (4.17)

and where it is understood that the spatial derivatives involved in 0(_) and

differenced as described follo_4ng Eq. (4.13c), and those involved in 0(_),

and S are differenced according to Eq. (4.14).

_(_) are

_(_), R,

Each step of the ADI sequence (4.16)involves the solution of a linear system of equa-

tions having a block-tridiagonal coefficientmatrix. For example, upon applying the

operator on the L.H.S. of Eq. (4.16a), we obtain

o^i **)n-_2_AT\(F Aq**,j_.! + ,! + -_- F Aqj+l = rj , 2 _ j g J - 1 (4.18)

where the subscripts k, 1 have been suppressed. The block-tridiagonal structure is

n (the blocks) are 5X5readily apparent, inasmuch as the Jacobian matrices Fj +1

square matrices.

However, the system of Eq. (4.18) is incomplete; it involves only J-2 equations among

the J unknown values of AQ**. The missing equations are those for the boundary points

j = 1, J. To close the system, Steger (Ref. 3) and Pulliam and Steger (Ref. 7) simply

assume A_* = A613* = 0 ; i.e., that the flow conditions at the boundaries do not

change over a time step. After the sequence (4.16) is completed for interior points,

they then update the values of q at the boundaries by ad hoc methods that are intended

to satisfy the boundary conditions at steady state. This time-lagging approach implies

only a zero-order time accuracy at the boundaries. The approach does not necessarily

degrade the accuracy of the steady-state solution, depending on the updating procedures,

but it may retard the rate of convergence to steady state. The numerical experiments

described in Section 5 suggest that this is the case.
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Rather thanuse the time-lagging approach, we follow the approachtaken in Ref.

andformulate implicit difference equationsfor the boundary grid points that are

similar to those for interior points, but that embodythe boundary conditions of

Section 2.4.

15,

4.2 BOUNDARYPOINTS

In this subsection, we formulate boundary point-difference equationsthat have the same

time accuracy as the interior point equations, and that are compatible with the latter

in their spatial order of accuracy. As indicated in thepreceding subsection, the present

treatment of boundary points differs from that in Refs. 13, 3, 6, and 7. The present

treatment for Eqs. (2.20) is patterned after that presented in Ref. 15 for the complete

Navier-Stokes equations (2.9), in that it provides a fully implicit set of equationsfor

the boundary points.

4.2.1 Time Differencing

The time differencing for boundary points is the sameas that for interior points, as

given in Eq. (4.i). However, it is convenient to perform the spatial differencing before

linearizing the equations in time (cf. subsection4. i, where the time linearization is

performed first). With this approach, the boundary conditions enter naturally into the

difference equations, and the formulation of the implicit operator matrices for the

viscous terms is effected more easily.

4.2.2 Spatial Differencing

In addition to the central operators given in Eq. (4. Ii), we shall employ the classical

forward difference operator A, andthe backward difference operator V. For a mesh

function fjkl ' the operators for the j direction are defined as follows

Ajfjki = (fj+l - fj) (4.19a)
k_

Vjfjk _ = (fj - f.J_lk _) (4.19b)
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The corresponding operators for the k and _ directions are identified by the latter

indices as subscripts. The subscripts will serve to distinguish the backward difference

operator from the vector gradient operator (Section 2), both of which are identified by

the symbol V ; and to distinguish the forward spatial operator from the time operator

of Eqs. (4.2).

WhenEq. (4.1) is applied at a point on the boundary of the computational space _ , _, _,

the spatial derivatives in that equationfall into two classes: interior derivatives taken

in directions that lie in the boundary surface itself, and one-sided exterior derivatives

taken in the direction normal to the boundary. For example, at the inflow boundary

--0 and the outflow boundary _ =_max' the derivatives a/3_ and 0/0_ are

interior derivatives along the boundary surface, and 0/05 is an exterior derivative

in the direction normal to the boundary. All interior derivatives in Eq. (4.1) can be

differenced in exactly the same fashion at the boundaries as at interior points of the

computational space (see subsection 4.1.2). The exterior derivatives must be treated

differently. Before doing so, however, it is instructive to interpret geometrically the

central difference operators that are employed in subsection 4.1.2.

As demonstrated in Ref. 6, the use of central difference operators at an interior

grid point of the computational space is equivalent to applying the finite-volume method

(Refs. 17, 18 ) to a cubical cell enclosing that grid point. As illustrated in Fig. 4-1a

for a cross-sectional plane _ = const., half-integer subscripts effectively define the

faces of a cubical cell of unit volume A_ A_ A_ = 1 that encloses each interior

point. The dashed lines in the figure delineate the cell boundaries. If Eq. (4.1) is

integrated over the volume of cell jkl in the figure and the resulting equation is divided

by the cell volume A_ A_ A_ then, for example, there appears a term that

represents the first derivative af)/8_ as

A_ = 1 (4.20a)
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In the finite volume method, the value of

values at the two neighboring grid points

A

f at a cell face is defined as the average of

^ ^ ^ j^fjf. = (f + f )/2 = _ (4.20b)
j+l/2,k,_ jk_ j+l,k,_ + 1/2,k,_

When the left-hand equality of (4.20b) is substituted into that of (4.20a), the resulting

equation is identical to Eq. (4.13a); namely, the central difference that is obtained by

applying the operators 6.j and #j in sequence. Similar results hold for all the spatially

differentiated terms of Eq. (4.1). Furthermore, by the mean value theorem, the first

term in the volume integrated version of (4.1) represents the time derivative of the cell-

averaged value of q, and is properly located at the cell centroid; L e., at the grid

point j, k, _ (Ref. 6 ). This geometrical interpretation simplifies the task of devising

boundary-point difference operators that are consistent with the central differences

employed at interior points. We consider first the outflow boundary _ = _max"

Outflow Boundary. Associated with each point of the outflow boundary is a half-cell,

as illustrated in Fig. 4-2. The centroid of the half-cell is indicated by the asterisk.

For the outflow boundary, the only exterior derivative in Eq. (4.1) is the first term

in parentheses on the L. H.S. The natural differencing of this term that is compatible

with the use of (4.20a) at the adjacent interior point is

_8-_/j (fj - _j _ 1/2)/(A_/2) = Vj_

= 1 (4.21)

where the indicated equivalence to the backward difference operator of Eq. (4.19b)

follows from Eq. (4.20b). The time derivative term in (4.1) must be applied at the

centroid of the half-cell

A

(4.22a)
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The latter can be related to the corresponding quantities at the neighboring grid points

within the spatial order of accuracy of (4.21) by linear interpolation (Refs. 6 and 15)

A

Aq, = (3Aqj + Aqj_l)/4

= [I - (1/4)_j1Aqj (4o22b)

Upon inserting Eqs. (4.21) and (4.22) into Eq. (4.1) along with the central difference

operators of subsection 4.1.2 for the interior spatial derivatives a/a_ and 0/0F,

the time linearization and implicit operator factorization can be performed directly to

yield an ADI sequence similar to the interior point sequence (4.16) for interior points.

The first step of the sequence for outflow boundary point is

^** = _ (4.23a)
[I + AT Vj (F n - _I)] Aqj,k, _ J,k,

(_ = 1/4 AT (4.23b)

where the term on the R. H.S. can be obtained fran the interior point equation (4.17)

by the substitution p_.5. -* V. in the first term on the right of the latter equation.
J 3 J

The other steps of the sequence are identical to those given by Eqs. (4.16b through d).

The described sequence is valid only for purely supersonic outflow, or for problems

that involve an external flow. In these cases, the full set of flow equations is used

at the outflow boundary, and the latter is situated downstream of the nozzle exit

(see subsection 2.4.6). For purely internal flows, we must modify the ADI sequence

to account for the boundary condition given in Eq. (2.31). With the aid of the equation

of state (2.6b) and the definition of q given below Eq. (2.9), the boundary condition

can be written in the form

- q2 + q3 + q4 - J/2/ (2/ - 1) = 0 (4.24)
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-(_i' i = 1,2,...,5 denote the components of the vector q and J is thewhere
n+l

Jacobian of Eq. (2.10). This boundary condition is to be satisfied at time T

,_n+l (_t) = 0 (4.25a)

The latteris linearized in time as follows:

n
_n+l = _n + _-_! Aq = 0

(4.25b)

We write the linearized boundary condition in the form

n Aq __n (4.26a)

where v denotes the row vector

v = ---z = (V2/2 ,-u,-v, -w, 1)
aq

(4.26b)

The linearized algebraic boundary condition is used in place of the u-momentum

equation, i.e., in place of the third component of the time-linearized and spatially

differenced version of Eq. (4.1). The resulting vector equation can be written in

the operational form

{M ÷AT IVj (_- cz_) + _kSk _+ _tj_5_H - Re I (SkR + 5_S)]} n Aqjk_ = _Jkt (4.27)

~ ]',~ ~All elements are zero in the third row vector of each of the matrices F, G, H and

of the operator matrices R, S_ the matrices otherwise are identical to F, I, G, H, R, S
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as defined in subsection 4.1.1. The third row vector of the matrix M is v as defined

in Eq. (4.26b); the other elements of M are those of the identity matrix I. Finally,

the third componentof the vector on the right of (4.27) is equal to the R. H.S. of

Eq. (4.26a); the other componentsare those of rjk _ in Eq. (4.23a).

The operator on the left of (4.27) can be factored easily after multiplying the equation
by M-1 and the resulting ADI sequencecan be written in the form (Ref. 14).

N]n ^** NnM + AT Vj (_- _I) Aqjk_ = rjk _ (4.28a)

I N -1 N |n ^, _ __n ^**M + A_ (#kSk G - Re 5kR) ] Aqjk _ = M--Aqjk _ (4.28b)

I _ Relsf_)] n = Mn _*M + Av (p_5_H - Aqjk_ Aqjk_ (4.28c)

Inflow Boundary,. The algebraic inflow boundary conditions on the total pressure, total

temperature, and transverse velocity components (see subsection 2.4.5) are treated

in the manner described above for the algebraic outflow boundary condition in

Eq. (2.31). The implicitly-differenced form of the mass conservation equation is used

along with the algebraic inflow boundary conditions to form a complete system of

implicit linearized equations for inflow boundary grid points. The ADI sequence has

the same form as Eq. (4.28) and can be obtained from the latter by the substitutions

J --* 1, c_ --* - c_, and V. --* A.. Note that the latter substitution also must be made
A ] J

in the R.H.S. term r.

Freestream Boundaries. The computational space described in Section 3 is such that

the freestream boundary conditions of subsection 2.4.3 apply at either of the boundaries

= _max ' _ = _ depending upon the nature of the curvilinear coordinate system.max _

For the grid geometry depicted in Fig. (3-6a), both are freestream boundaries. We

describe below the treatment of Eq. (4.1) for boundary points _ = Vmax (k = K).
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The interior derivatives 3/8_ , 0/0_ are differenced centrally as for interior and

points (see subsection 4.1.2)° Backward difference operators are used to represent

the exterior first derivatives 8_/8_ and 00 ( _ )/_ in the manner described earlier

^_for exterior derivatives at the outflow boundary. The derivative 80 ( )/0_? is differenced

as

°°(n) ~ (o^(_)
077 j, K,

In view of the boundary conditions (2.27b), the spatially differenced form of Eq. (4.1)

for the boundary point j, K, _ then becomes

A

(I - (1/4) V k) Aqj,K, + AT (pj6jf" + Vkg + _;5_h) n+l

_ ^ ) n/1o( 1+ Ekll j,K,_I !

I 0AT Rel 2 [ j,K,3EkL/2 ^(rl) n +

(4.29)

where E is the classical shift operator (Ref. 16).

shift operators in Eq. (4.29) are defined by

For a mesh function f. the
J, k,_'

Eklfjk_ = fj,k-l,£ (4.30a)

Ek 1/2 (4.30b)fjk_ = fj,k- 1/2,

Upon performing the time-linearization Eqs. (4.3) and (4.5a), the resulting implicit

difference equation is

I [ in] AnI + AT Uj6jF + Vk (G - c_I) + 2 Re -1 E k 1/2 R + g_6_H AqjK_ = rjK _ (4o 31a)
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and

{ I -rjK _ = - AT pjSjf'+ Vkg + p_5_ + Re I 2 Ekl/2 _(_?)+ Ekl_(._) jK_

(4.31b)

Note that the differential operator 8/877 that enters into the quantities 0(_) and R

[ see Eq. (2.10b) and Eq. (A. 4) of Appendix A] may be replaced by the central difference

operator 6 k as is done in subsection 4.1.2 for interior points, because the operator

Ek 1/2 shifts the point of application of the operator 5k backward by half the mesh

spacing.

The three algebraic boundary conditions (2.27a) are used in place of the mass, u-

momentum, and energy equations, i.e., in place of the first, second, and fifth

components of the vector Eq. (4.31). The final ADI sequence for the freestream

boundary points then can be obtained in a fashion analogous to that employed in

Eqs° (4.24) to (4.28) for outflow boundary points.

Wall Boundaries. The ADI sequence for wall-boundary points can be obtained in a

fashion similar to that outlined above for the freestream boundary. As shown in

Ref° 15, the algebraic boundary conditions (2.21) replace the three momentum

equations, namely, the second, third, and fourth components of the vector equation

(4.1). When the wall temperature is specified according to Eq. (2.22), the latter

replaces the energy equation (Ref. 15 ) namely the fifth component of Eq. (4.1). For

an adiabatic wall, the boundary conditions (2.21) and (2.23b) simplify the spatially-

differenced form of the energy equation in much the same way as the freestream

boundary conditions (2.27b) contribute to the simplicity of Eqs. (4.31).

Symmetry Planes. At a symmetry plane such as the vertical plane _ = 0 for the

nozzle configuration depicted in Fig. (3.6a), the exterior derivatives _/_ in

Eq. (4.1) are evaluated as described in subsection 2.4.3° In the third component

of the vector Eq. (4.1), these derivatives vanish according to Eq. (2.25). In the
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remaining four components, the differential operator _/a_ may be replaced by the

forward difference operator A k , which is consistent with Eq. (2.26).

The treatment of the time derivative term A_/AT is different from that used at all

other types of boundary. At a symmetry boundary, each boundary point is considered

to lie at the centroid of a full cell enclosing the point. The time-derivative term thus

is centered at the grid point itself, and the counterpart of Eq. (4.22b) does not apply.

Once the time-linearization is performed, the resulting implicit operator may be

factored to obtain the ADI operator sequence corresponding to the interior point

sequence (4.16).

4.3 SMOOTHING

The algorithm of subsection 4.1 is neutrally stable (Ref. 13)in that short wavelength

spatial disturbances are undamped. An explicit smoothing term is appended to the

R. H.S. of Eq. (4.16) to prevent nonlinear instabilities and to provide a dissipative

mechanism for computing embedded shock waves. Steger (Ref. 3 ) and Pulliam and

Steger (Ref. 7 ) employ a nonconservative fourth-order smoothing term for each

coordinate direction. Such higher-order terms do not compromise the second-order

spatial accuracy of the algorithm. However, the analysis given in Ref. 6 shows that

these nonconservative smoothing terms generate errors in global conservation that

degrade the solution. This degradation is confirmed by the numerical experiments

described in Section 5. This defect is overcome by the conservative smoothing term

developed by Thomas (Ref.15). The form of this term for the _ coordinate direction

is

Sjk_ - (flAT)6jJS_jjld (4.32a)

S2k_ = _ (fiAT)El/2 3--J J 5j qjk_
(4.32b)
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where J is the Jacobian in Eq. (4.10) and fl is a constant. The first equation applies

at those interior points located more than two mesh intervals A_ from the boundaries,

and the second equation applies at the point j = 2 immediately adjacent to the left

hand boundary in Fig• 4-2. The corresponding term for the point adjacent to the right

hand boundary is obtained from Eq. (4.32b) by the substitution E 1/2 -- _ E - 1/2
J J

No smoothing term is applied at the end points themselves• The smoothing terms in

Eq. (4.32) remain valid at boundary points that lie in the surfaces 77= const, or

-- const, where the difference operators 6. represent interior derivatives _/_}.
J

Similar smoothing terms apply for the other two coordinate directions _, [. For grid

points in the neighborhood of a symmetry plane, the smoothing term for the direction

normal to the symmetry plane is similar to Eq. (4.32a), with appropriate modification

to account for the symmetry properties of q. The linear stability boundary of the set

of smoothing terms is (Ref. 15)

3

AT _lfii{I+ (Axi/2) max [3(_nJ )/Dxi]]
i= xi

-< 1/'8 (4.33)

where x., i=1, 2, 3 represents the coordinate directions } , rT, _, respectively.z

The smoothing coefficients fli must be selected to satisfy this inequality.

4.4 PROPERTIES OF THE NUMERICAL METHOD

A linear stabilityanalysis shows that the difference equations of subsection 4.1 are

unconditionally stable for arbitrary values of the time step AT (Ref.19). Since only

the steady-state solution is of interest in the present application, we point out several

important features of the method that ensure an accurate steady state solution.

First, at steady state, the term _ on the R.H.S. of Eq. (4.16a)vanishes [cf. Eq. (2.20)].

Because Eqs. (4.16) yield a direct solution for the change in the flow variable vector
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over a time step, the fact that r is proportional to Ar implies that the steady state

solution is independent of the magnitude of the time step (Refo13). The accuracy of

the solution then depends only on the accuracy with which the spatial derivative terms

in Eq. (2.20) are represented on the finite-difference grid and, of course, on the

fineness of the grid. These derivatives are approximated at interior points by

difference operators whose truncation error is of second order in the spatial grid

spacing, and can be expected to yield reasonable accuracy for a given grid. The

difference operators employed at boundary points have a local truncation error that

is of first order in the grid spacing. However, by examining the entire system of

difference equations for the computational domain, one can show that global second-

order accuracy is achieved; i. e., the global truncation error is of second order

(Ref. 15). Fm'thermore, strict global conservation is maintained to within machine

roundoff error. That is, the difference equations possess the same property of

global conservation as the partial differential Eq. (2.20).

The global conservation property of the differential equations spanning the physical flow

region is that only the fluxes through the boundary of the region contribute to the volume

integral of the physical variables. For the difference equations given in subsections

4.1 and 4.2, the volume integral of the physical variables is expressed naturally as a

quadrature sum. When the difference equations are summed with the appropriate

weights of the quadrature, global conservation is achieved if the physical fluxes make

a net contribution only at the boundaries, and any ad hoc smoothing terms make no

contribution.

It is easy to show that the weighted sum of the difference equations over all interior

and boundary grid points retains the global conservation property of the differential

equations when the weights are chosen according to the midpoint quadrature rule.

The latter is appropriate because it is consistent with the second-order spatial

accuracy of the central difference operators that are employed at interior points of

the grid. The smoothing terms presented in subsection 4.3 are differenced in a

conservative fashion and obey homogeneous boundary conditions. This ensures that

the weighted sum of these terms over all grid points forms a telescoping series in

which the contributions from adjacent interior points cancel, and the contribution from

each boundary point is zero. Thus, the smoothing terms do not compromise the

global conservation property of the difference equations.
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Section 5

NUMERICAL EXPERIMENTS

An array of numerical experiments have beenconductedto test various aspects of

the numerical method. The bulk of the experiments have beenperformed to develop
and verify methods of computing the boundary conditions that are valid throughout the

subsonic, transonic, and supersonic flow regimes. Experiments also have been

performed to explore the effects of explicit smoothing terms on the solution.

The test problem selected is that of the external laminar flow over a flat plate of

finite length at a freestream Reynolds number Reoo= 105 Prandtl number Pr = 1
Y

and viscosity proportional to temperature, p = T . For the subsonic flow experiments,

the freestream Mach number is M = 0.1 . The computational grid for this case is

shown in Figs. 5-1 and 5-2, and features parabolic boundary-layer curvilinear coordi-

nates. The lateral outer computational boundary is placed approximately ten boundary

layer thicknesses away from the plate. The grid is stretched exponentially in the z

direction to resolve the thin viscous layer. The number of grid points in the x, y,

and z directions is 15 x 5 x 15. The stretching in the z direction places about half

of the grid points within the boundary layer.

All test runs employ the implicit adiabatic wall boundary computation technique of

Ref. 15 {see section 4.2.2). The initial conditions are as follows. Pressure is

assumed uniform and equal to its freestream value, p = 1 . Velocity is taken from

the Blasius boundary layer solution for incompressible flow (Ref. 20). Temperature

is computed from the velocity through the Crocco relation, and density follows from

the equation of state.

Each set of experiments is discussed below in a separate subsection. The conclusions

drawn are summarized separately at the end of each subsection.
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5.1 OUTFLOW BOUNDARY CONDITION TESTS

As discussed in section 2.4.5, the quasi-one-dimensional theory of characteristics

implies that no boundary conditions are to be specified when the x-component of

outflow velocity is supersonic, u > c . Conditions at the boundary exert no influence

on the upstream flow, and simple extrapolation methods can be used to compute the

flow variables at the boundary. An improvement over extrapolation is to compute the

flow variables from the equations, using "upwind" difference operators for the terms

that contain spatial derivatives in the direction normal to the boundary (Ref. 6). Such

operators are termed "conservative" if the resulting difference equations possess the

same global conservation property as the differential equations that govern the flow

(see Section 4.4). This conservative outflow boundary computation procedure has been

applied successfully by Thomas and Lombard (Ref. 6) in supersonic external viscous

flows that contain a subsonic region embedded in the near-wall region of the boundary

layer. The presence of an outer supersonic region was believed responsible for the

success of this procedure, inasmuch as characteristics theory suggests that a boundary

condition is required when the flow is subsonic (see section 2.4.6).

According to the latter theory, four characteristics are directed from the interior

toward the boundary, and one emanates from the boundary toward the interior. The

latter is responsible for the upstream influence of the boundary, and implies that a

boundary condition is necessary, say, the boundary pressure. The boundary condition,

together with the four compatibility relations that hold along the other four character-

istics then could be used to compute the flow variables at points of the boundary where

u < c . The implicit solution of the compatibility relations in a fashion consistent

with the implicit method for interior points is much more complicated than the conserva-

tive outflow boundary computation procedure. Numerical experiments therefore have

been performed to investigate the validity of the latter procedure for subsonic and

transonic flows.

The test case is for the flat plate problem described earlier, with a freestream Mach

number M = 0.1. Freestream boundary conditions p -- p = 1, u = M_, v = w = 0

were imposed at the lateral outer boundary z = Zma x (x) , and held fixed throughout
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the computation. Conditions at the inflow boundary also were held fixed at their initial

values. The nonconservative smoothing terms (Refs. 3, 7, and 13)were used. A

constant time stepsize AT = 0. 005 was used. This value is twenty times larger than

the stable limit of explicit numerical schemes as given by the Courant stability

criterion. That is, the Courant number for the calculation is Co = 20 .

Figure 5-3 shows the computed surface pressure distribution after 100 steps. The

pressure peak at the left is probably a result of the simple inflow boundary condition.

Note the smoothness of the pressure distribution near the trailing edge of the plate

where the conservative outflow boundary computation procedure is used. This result

shows that the procedure yields smooth, stable results even when the subsonic region

is not confined to the near-wall portion of the viscous layer.

We conclude that the procedure is valid for subsonic and transonic flow, as well as

for the supersonic external flow problems for which it was employed originally in

Ref. 6. It is likely that the success of the procedure is due partly to the use of

conservative boundary-point difference operators, and partly to the fact that the

viscous flow equations are spatially parabolic in the transverse y, z directions,

rather than being strictly hyperbolic as assumed in the quasi-one-dimensional theory

of characteristics. We conjecture that the parabolicity allows information about the

freestream conditions to be transmitted along the outflow boundary to the wall, and

obviates the need for the pressure to be specified as a boundary condition. Having

confirmed its general validity, the conservative outflow boundary computation

procedure is used in all subsequent numerical computations.

5.2 FREESTREAM BOUNDARY CONDITIONS

Although the numerical experiment just described confirmed the validity of the

conservative outflow boundary condition procedure, it revealed that a truly steady-

state solution is difficult to obtain for subsonic flow M < 1 if all freestream flow
oO

conditions are imposed at the lateral outer boundary z = z . Further computa-
max

tion shows that, although the numerical method remains stable for Courant numbers
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as high as 400, the solution continues to change with time even after many hundreds of

steps. After many numerical experiments to investigate possible causes of the per-

sistent unsteadiness in the solution, the evidence became strong that the difficulty lay

in the use of freestream boundary conditions at the outer boundary.

It is known from second-order boundary layer theory that the displacement effect of

the viscous layer near the wall induces a first-order perturbation of the outer inviscid

flow (Ref. 21). Specifically, a finite velocity v is induced in the direction normal to

the wall. Apparently, this induced normal velocity does not decay with distance away

from the wall in a wholly subsonic flow, and one cannot impose at the outer computa-

tional boundary the freestream conditions v = w = 0 , no matter how far that boundary

is placed from the wall.

A variety of numerical experiments were conducted to develop a valid method for the

outer boundary. The first of these experimented with a generalization of the conserva-

tive outflow boundary computation procedure in which the only boundary conditions

applied were that the viscous stress and heat conduction terms must vanish at the

boundary because the freestream flow is inviscid. All flow variables then are

computed implicitly from the mass, momentum, and energy conservation equations.

However, better results were obtained by imposing freestream boundary conditions

on the density, streamwise velocity u , and pressure. The transverse velocity

components v , w are computed from the transverse momentum equations as in the

generalized outflow boundary computation procedure.

A steady-state solution was obtained in about 150 steps, using a time stepsize that

corresponds to a Courant number Co = 200 . The results are displayed in Figs. 5-4

to 5-11. The first seven of these figures show vertical profiles of the velocity

components, the density, and the pressure. The velocity profiles at a station midway

along the plate (Fig. 5-4) are smooth. Note that the vertical velocity v (dashed line)

remains non-zero all the way to the outer boundary. The density profile of Fig. 5-5

at the same station is plotted on a greatly expanded scale, because the maximum

density change between the wall and the freestream boundary is less than 0.2% at the
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very low freestream Machnumber Moo= 0.1 . The pressure is uniform across

the entire computational region, as shownin Fig. 5-6.

The profiles are similar at the trailing edgeof the plate, which coincides with the

outflow boundary (Figs. 5-7 to 5-9). Figure 5-10 shows a magnified view of the

velocity profiles across the near-wall viscous layer at the trailing edge.

We have found the computeddrag coefficient to be a sensitive indicator of convergence

to steadystate. The variation in drag as a function of the number of time steps

computedis shownin Fig. 5-11. The negative sign is associated with the sign
convention used to denotethe direction of a force component. The steady state is

seen to be reached in less than200 time steps, according to the drag computation.

This was confirmed by the fact that an additional 100steps producedno further change

in any flow variable at any grid point, to within machine roundoff error. Furthermore,
the root mean square residual over all grid points had decayedto the order of the

machine roundoff error, where the residual is defined as the set of steady-state terms

in the flow equations. By this definition, the residual shouldvanish at steady state.

The asymptotic steady state value of the computeddrag coefficient is

CD = 3.97 x 10 -3 , about 5 percent lower than the value predicted by the approximate

Blasius boundary layer solution for incompressible flow (Ref. 21). The Blasius

value is

C D = 1.328/x/_'_ = 4.20 x 10 -3 (5.1)

One would expect the same freestream boundary computation procedure to be valid for

supersonic flow. This was confirmed by a successful computation for a freestream

Mach number M o = 3 , again at a Reynolds number Reoo = 105 . For a supersonic

freestream, the viscous interaction induces a shock wave in the predominantly inviscid

flow outside the viscous wall boundary layer. The computed surface pressure distri-

bution in Fig. 5-12 shows that the shock-induced elevation in surface pressure is
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greatest near the leading edge, where the shock is strongest. Note the smooth

variation in pressure all the way to the trailing edge, where the conservative outflow

boundary computation procedure is used.

Figure 5-13 shows the velocity profiles at midplate. The weak embeddedshockwave

is evident in the abrupt decay of the vertical velocity v (dashedline) across the

shock. The shock is poorly resolved by the exponentially stretched grid used in this

test case. The shock is again evident in the pressure profile (Fig. 5-14) at the same

station. The post-shock oscillation is commonwith suchshocks that are "captured"

by the numerical method, but probably is aggravatedby the aforementioned poor

resolution of the shock jump.

Similar velocity and pressure profiles at the trailing edgeare displayed in Figs. 5-15

and 5-16. The density profile at the trailing edgeis given in Fig. 5-17 to show the

large density changethat occurs across the boundary layer. The density changeis a

consequenceof the temperature rise associated with viscous dissipation of kinetic

energy, which is much greater here than in subsonic flow (ef. Fig. 5-8). Magnified

views of the velocity, pressure, and density profiles across the inner viscous boundary

layer region at the trailing edgeare given in Figs. 5-18 to 5-20 to show the smoothness
of the solution, and the goodresolution that is achievedwith as few as eight grid points

across the layer.

The computeddrag coefficient history is shownin Fig. 5-21. The Courant number

basedon the time stepsize is about 100for this case, and steady state is again achieved

within about 200 time steps. The computeddrag coefficient at steady state is

CD = 4.54 × 10 -3 . According to laminar boundary-layer theory, the drag is

independent of Mach number for Pr = 1 and viscosity proportional to temperature,

and the incompressible Blasius value of Eq. (5.1) applies (Ref. 20). The computed

drag is about 8 percent larger than the Blasius value. The discrepancy i.s not

surprising, in view of the fact that boundary-layer theory neglects the viscous

interaction, and does not account for the presence of the external shock wave.
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From these numerical experiments, we conclude that the described procedures for

computing the flow at outflow boundaries andat freestream boundaries are valid over

the whole range of subsonic, transonic, and supersonic flow conditions. The numerical

experiments played a vital role in the final formulation of the boundary conditions

presented in Section 2.4, and in the developmentof the boundary point difference

equations presented in Section4.2.

5.3 EFFECT OF SMOOTHINGTERMSON THE SOLUTION

Numerical experiments also have beenperformed to explore the effects of various

types of explicit smoothing terms on the solution. Both the conservative smoothing
terms of Section 4.3 and the nonconservative terms of Refs. 3, 7, and 13havebeen

tested. In general, the conservative smoothing terms have beenfound to be superior

in two respects.

First, the nonconservative smoothing terms produce a substantial overshoot in both

the density and the streamwise velocity componentat grid points situated near the

boundary layer edge, where the curvature in the profiles of thesevariables is greatest.

That is, the values exceedthe freestream values in this region. For the samevalue

of the smoothingcoefficient, the conservative smoothing terms producemuch less

overshoot. Someovershoot is still present, as evidencedby the profiles in Figs. 5-4

to 5-20, which were computedusing the conservative smoothing terms.

Second, the conservative smoothing terms do not cause the difference equationsto

violate the global conservation property of the differential equations that govern the
flow. This is not true of the nonconservative smoothing terms. The significance

of the global conservation property became evident whenwe attempted to compute the

drag by integrating the momentum defect over all boundaries permeable to the flow.
The drag computedby this method differed by nearly a factor of two from that obtained

from a direct integration of the surface stresses becauseof the fact that the nonconserva-

tive smoothing terms contribute errors to the global mass, momentum, and energy
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balances over the flow region. The conservative smoothing terms make no net

contribution to the global balances. Consequently, the drag computedby momentum

defect is in agreement with that obtainedby integrating surface stresses.
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Section 6

TURBULENCE MODELS

6.1 INTERNAL AND EXTERNAL WALL BOUNDARYLAYERS

The boundary layer flow along the external and internal nozzle walls, as well as on the

wedgeplug andon the side plates, canbe modeled using a two-layer eddy viscosity

model which has beenemployed successfully in previous calculations of compressible
boundary layer flows at subsonicand supersonic Mach numbers. Implicit in this

model is the assumption of two-dimensional, thin shear layers in local equilibrium;

i.e., the turbulent flow in the boundary layer represents local meanflow conditions.

A relaxation eddyviscosity model is available and will be incorporated into the calcu-

lations in cases where streamwise pressure gradients lead to flow separation. The

relaxation model accounts for the lag in turbulence response to rapid changesin mean

flow conditions. The application of other turbulence models suchas those of Refs. 22,

23, and 24 which entail solving differential equations for the Reynolds stresses, turbu-

lent kinetic energy, and length scale appearnot warranted in the present application.
Suchmodels do not offer significantly better performance, but only increase computa-
tional work.

With these assumptions, the turbulent stresses _t in the boundary layer are modeled

in terms of the eddy viscosity #t by

_U
_t = #t _yy (6.1)

where U is the velocity component parallel to the wall, and y is the coordinate nor-

mal to and measured from the wall. In the inner region (also known as .sublayer), #t

is calculated from the Van Driest eddy viscosity formulation with damping in the sub-

layer which was modified by Cebeci et al. (Ref. 25) for the case of compressible flow
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with pressure gradient,

#t pk 2 y2 0U= - e 0y
(6.2)

where the damping constant A+ depends upon the streamwise pressure gradient as

+ = 26/1 .._y__ dp _-1'/2A + 2 ds] (6.3)

pu /

The cofistant 2< has the value of 0.40. A slightly different expression for A + is ob-
+

tained by replacing y in Eq. (6.3) with the sublayer thickness Ys defined by

+ P YS u7

Ys = _ - 11.8 (6.4)

so that

where

A + = 26 (1 + 11.8P+)-1/2

P+ is the pressure gradient parameter

(6.5)

p+ _ p .dP (6.6)
2 3 ds

p u
T

In the outer region of the boundary layer, the eddy viscosity is determined from the

Clauser defect law
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6
0.0168 P

(u - u) dy (6.7)

I+5.5 5

U represents the core flow velocity at the edge of the boundary layer. Equation (6.7)c

includes in the denominator Klebanoff's intermittency factor (Ref. 26} in order to ac-

count for the intermittent nature of turbulent flow in the outer region of the boundary

layer. The choice of Eqs. (6.2) or (6.7) is made so as to assure continuity of #t from

the inner to the outer region. Equation (6.7) involves the core velocity U c and the

boundary layer thickness 6 , both of which may not be well defined in the nozzle in-

terior for nonuniform inlet conditions. In this case, a mass-flow averaged core flow

velocity can be defined to represent the flow velocity outside the boundary layer. The

boundary layer thickness 6 can be defined as the distance from the wall within which

the velocity or its gradient dU/dy approaches the corresponding values of the external

stream to within a specified tolerance.

6.2 INTERNAL CORE FLOW

The nature of turbulence is characterized by slow response to sudden changes in rates

of strain, for which reason the turbulence of the nozzle core flow is expected to under-

go negligible changes during its passage through the nozzle. A constant eddy viscosity

will be determined for the flow outside the boundary layer from the relationship for a

round }et according to Schlichting (Ref. 20),

#c = _ p b U° (6.8)

where K = 0.0256, b is the nozzle inlet radius, and U is the average inlet velocity.
o

If the eddy viscosity of the core flow is considerably greater than Pt of the outer

wall region, it would be advantageous to suppress the intermittency factor in Eq. (6.7)

since the eddy viscosity in this region is increased by entrainment of turbulence.
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During the passageof the core flow through the nonaxisymmetric nozzle, lateral redis-

tribution of temperature by turbulent fluctuations or diffusion will be small, but will be

taken into accountaccording to specified nonuniformities of the inlet flow. Either tem-

perature or adiabatic boundary conditions can be specified along thenozzle wall. In

either case, a constant turbulent Prandtl number of Prt = 0.9 will be used in the
energy equation. This value hasbeen shownby Cebeci (Ref. 27) to lead to excellent

predictions of the boundary layer properties at various Mach numbers up to M = 6.6.

The turbulent eddy conductivity kt is thus defined by

Prt = _--tCp = 0.9
k t

(6.9)

The wall boundary layers external to the nozzle belong to computational Region C

illustrated in Fig. 6-1. They will be computed using the same eddy viscosity models

described above. Although the sketched geometry does not indicate regions of separated

flow, exterior flow separation may occur in the region of confluence with the interior

flow. In such cases, the relaxation eddy viscosity model of Shang and Hankey (Ref. 28)

can be used to correct the local equilibrium eddy viscosity model for the effects of

upstream history (nonequilibrium effects) upon the development of turbulence. The

model computes a nonequilibrium eddy viscosity #n from local and upstream values,

_n = /_t + 0_o - Pt ) - exp - (6.10)

where the subscript "o" refers to the upstream location where an abrupt change in

streamwise pressure gradient occurs. The relaxation length X has typically a value

of 2.5 to 10. In the calculations of turbulent, separated flow over axisymmetric after-

body boattail configurations by Holst (Ref. 29), best comparison with experimental

data was obtained for X = 2.5.



6.3 FREE SHEARLAYER AND DEVELOPEDJET REGION

The flow in RegionB of Fig. 6-1, outside the boundary layers on the side plates, can

be characterized as a two-dimensional free shear layer. This flow changeslater into

Fig. 6-1 Definition of Mixing Layer Flow in Region B

a developedfree jet after the mixing layer spreads and envelopes the entire exhaust

stream. Compressible shear layers of this type with differences in temperature

and density across the layer have been computed successfully with eddy viscosity models

where #t is proportional to the width of the mixing region and to a characteristic

velocity. As in the case of the internal and external boundary layers, we favor the

eddy viscosity approach for computational reasons over more complicated models,

e.g., Varma et al. (Ref. 24). In particular, the model used by Donaldson and Gray

(Ref. 30) represents a convenient and accurate method for computing the merging of

the two mixing layers in regions into a single jet, although it may not be necessary to

carry the computations into the fully developed turbulent region. The eddy viscosity

of the mixing layers is then given by

1 k (_ (U - U o) (6.11a)_t = _ - Yi ) c

m

where U is the maximum streamwise velocity component of Region B, and Y, Y.
C 1

are coordinates measured from the nozzle centerline as indicated in Fig. 6-1. Using
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the calculated and experimental data of Ref. 30, k dependsuponthe Mach number l_

at the point where the shear layer velocity equals (Uc + Uoo)/2,

k = 0.046 - 0.016 M for M <_ 1.3

k = 0.025 for M > 1.3
(6. lib)

The dependence of k upon M implies thatthe existence of a stationary shock structure

in a free mixing layer has no first-order effects upon the mixing rate. Ifthe downstream

computational boundary reaches into the developed jet region, gt is calculated from

Eq. (6.11) with Y. = 0 and with U representing the maximum velocity in the jet.
i C
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Appendix A

IMPLICIT OPERATORMATRICES FORTHE VISCOUSTERMS

The elements of the operator matrix R in Eq. (4.5a) can be derived most easily as

follows. We first expandthe vector product terms that enter into Eq. (2.16b) for t_(_)

and eliminate the temperature T

_(_7) = gj

by using the equation-of-state (2.6b). The result is

m

0

+ +
lU_ _lVw _3ww

_lU_? + (_2v + f12wT?

fl3u_ + [32v_/ + _3w77

+

+ (cy3 - _4) (w2/2)_}

+ (_2 - _4 ) (v2/2)U

+ i(u%+  2(vw) 

+ _3 (wu)_ _

(A. 1)

= IVT}12 + 2/3 _ = iVY[ 2 2x 2 + _y/3 _3
2

= IV_

/32 = _y_}z/3 _3 : _z_Tx/3

_4 = (T/Pr) IVT/[2

The corresponding equation for _ (_)

substitutims 0, _ -* co,_.

can be obtained from Eqs. A. 1 by making the
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Now, R denotesthe Jacobian matrix operator

onO(r/) -1

R - _ - J R' (A. 2a)

where R'
a_(_)

oq
(A. 2b)

If 0. denotes the i 'th
1

nent of the vector _,

of the vector _ (_) and qj denotes the j,thcomponent

then the elements of the matrix operator R' are

compo-

If we neglect any dependence of /_, _/, or Pr on q_

computed easily after writing the quantities u,v,w

ponents of -_

then the matrix elements can be

in Eq. (A.1) in terms of the com-

"_= (P, pu,pv,pw,c)T = (ql,q2,q3,q4,q5)T

u = q2/ql v = q3/ql w = q4/ql

(A.3)

The operator matrix R' then can be written in the bordered form (cf. Ref. 7)

l_ T

m

0

!

r21

I

r31

!

r41

!

r51

0 0 0

P

r' r'
52 53

r !

54

I 0

I
I 0
I
I 0
I
I 0
I
I !

I r55

(A.4a)
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where the submatrix operator P may be written as the product of an ordinary matrix

Q and a scalar differential operator

O (l/p) (A. 4b)P = Q-_

where Q is symmetric

Q

m

_1 fll f13

fll _2 f12

f13 f12 c_3

(A. 4c)

The non-zero border elements of R T are given by

m

!

r31

!

r41

= -Q

-o_ (u/p(

-o_(v/P) (A .4d)

I

r51 0 O (v2/p) c_3

- 2fl I -_ (uv/p) - 2fl2-377'vw/p) - 2fl 3 _ (WU/p)

r' = - ' - a4_(u/P)52 r21

r' = - ' - (x4-_ (v/p)53 r31

r' = - ' - _4 3-_(w/P)54 r41

, = ..,3 (l/p)r55 _4 d'/

(A. 4e)
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The operator notation employed in Eqs. (A. 4) is to be interpreted as follows. For

example, the final term that appears in the fifth component of the vector RnA_t of

Eq. (4.5a) is the term

(r55) n Aq5 = _4 0-_ (1/pn) Ae (A. 5)

operating
The latter signifies the differential operator (_4 _-

and Ae

_4 _--_-(1/pn)A£ ___Ot _ (AE)4 0U _-

on the product of 1/P n

(A.6)

The elements s.. of the matrix operator
1]

simple substitution _? ---_.

S can be obtained from Eqs. (A. 4) by the
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